
Моделирование сухой градирни АСММ

Авторы:

Спиридонов Александр, ведущий инженер Колесник Сергей, ведущий инженер Теплякова Наталия, инженер-исследователь - <u>докладчик</u>

Сухая градирня на естественной тяге

- Не требует постоянного подвода охлаждающей воды для орошения теплообменной поверхности и позволяет минимизировать оледенение при отрицательных температурах окружающей среды;
- Отказ от вентиляторов в пользу естественной тяги воздуха позволяет снизить потребление электричества на собственные нужды станции и минимизирует требуемое техническое обслуживание градирни.

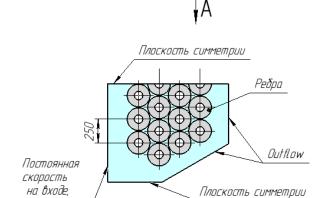
Этапы работы

<u>Подготовительный</u> <u>этап</u>

• Моделирование небольшой ячейки области теплообменников с целью определения параметров пористого тела.

Расчет расхода ЕЦ и снимаемой тепловой мощности в условиях безветрия

• Моделирование сектора градирни, включающего одну секцию теплообменника, с воздухом вокруг.


Оценка влияния ветра

• Моделирование половины градирни с окружающим воздухом при температуре -60 °C и скоростях ветра 1, 5 и 10 м/с.

Выбрана конструкция градирни

Подготовительный этап

Моделирование небольшой ячейки области теплообменников с целью определения параметров пористого тела.

Гидравлические потери в i-м направлении в зависимости от скорости v_i :

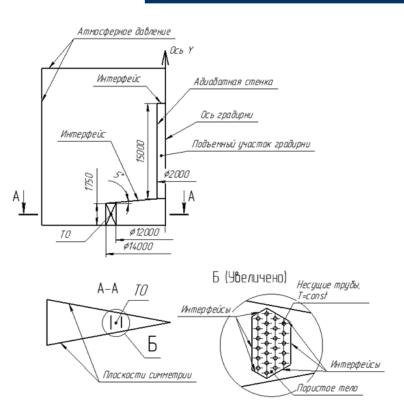
$$\Delta p_i = \underbrace{\frac{\mu}{\alpha_i} \cdot v_i \cdot \Delta n_i}_{\text{вязкостная составляющая}} + \underbrace{C_{2i} \cdot \frac{1}{2} \cdot \rho \cdot |v| \cdot v_i \cdot \Delta n_i}_{\text{инерционная составляющая}}.$$

По результатам серии CFD-расчетов ячейки получена зависимость:

$$\Delta p_x = 0.9933 \cdot v_x + 4.0933 \cdot v_x^2.$$

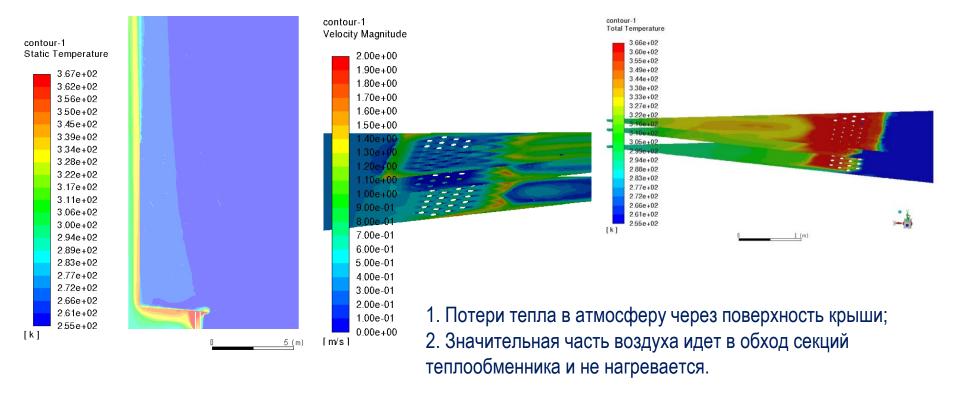
Отсюда коэффициенты пористого тела:

$$\frac{1}{\alpha_x} = 43806,$$
 $C_{2x} = 5,4351,$ $\frac{1}{\alpha_y} = \frac{1}{\alpha_z} = 1,$ $C_{2y} = C_{2z} = 10000.$


А (Увеличено)

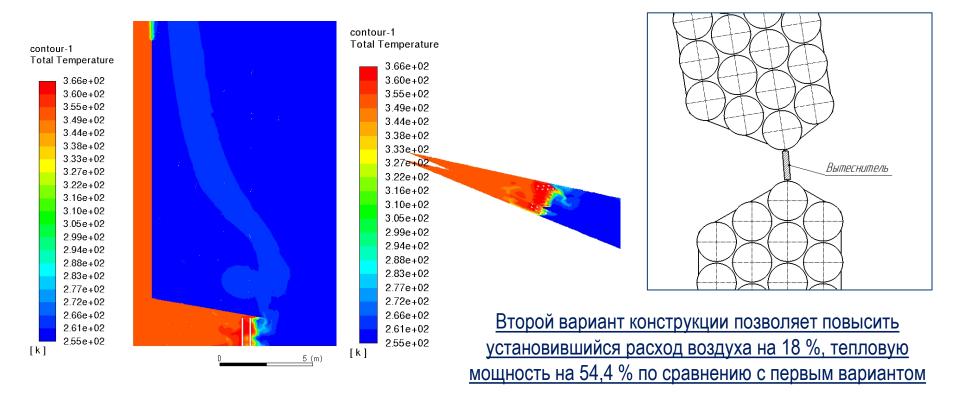
T=rnnst

Моделирование градирни в условиях безветрия


Цель расчетов - определение установившихся расходов естественной циркуляции воздуха и снимаемой тепловой мощности.

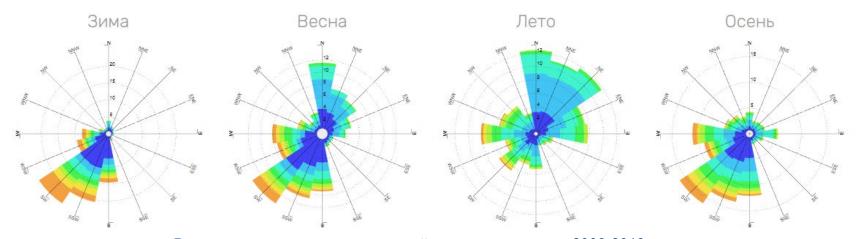
Рассмотренные варианты конструкции:

- 1. Угол наклона крыши градирни 5° относительно горизонтали. Крыша без теплоизоляции;
- 2. Угол наклона крыши градирни 10° относительно горизонтали. Крыша теплоизолирована. Между секциями теплообменника установлены вытеснители (щиты).



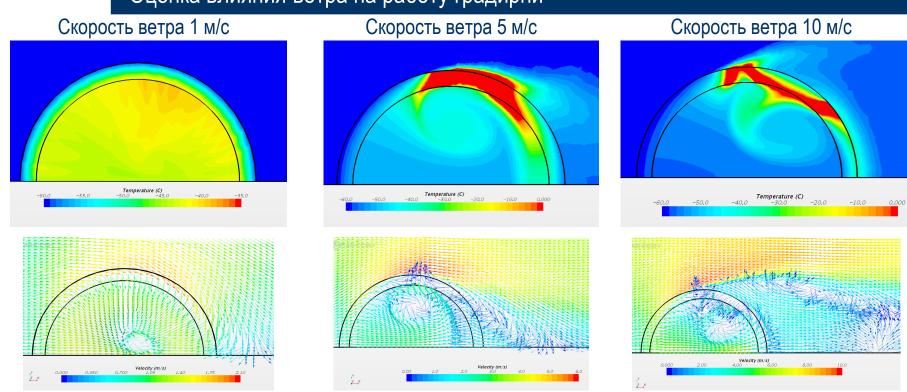
Моделирование градирни в условиях безветрия. Первый вариант конструкции

Моделирование градирни в условиях безветрия. Второй вариант конструкции

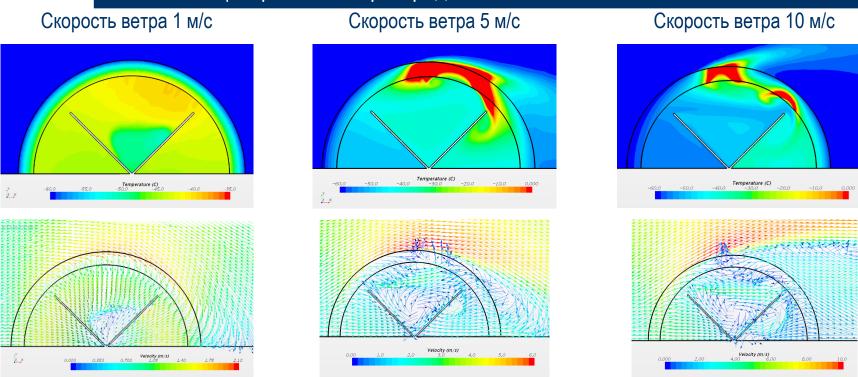


Оценка влияния ветра на работу градирни

- 1. Скорость ветра в планируемом районе размещения может достигать 24 м/с;
- 2. Направление ветра в течение года не постоянно;
- 3. На одну градирню выходит 2 петли второго контура АСММ.


Необходимо обеспечить минимальную неравномерность теплосъема для обеспечения симметричности работы реакторной установки при любых атмосферных условиях

Роза ветров в предполагаемом районе размещения за 2008-2018 года

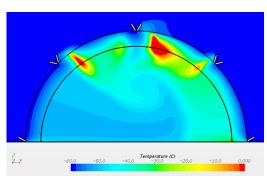

Оценка влияния ветра на работу градирни

Значительная неравномерность при больших скоростях ветра!

Оценка влияния ветра на работу градирни. Установка центральной перегородки

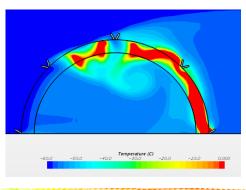
Нет стабильного положительного эффекта!

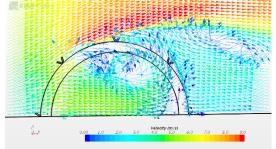
Оценка влияния ветра на работу градирни. Установка внешних завихрителей воздуха


Внешний вид аэродинамического завихрителя модернизированной градирни №1 Гродненской ТЭЦ-2

Направляющие щиты

Вход в градирню


Выход из градирни



200 10 20 Velocity (m. s) 40 50 80

Скорость ветра 10 м/с

Нет стабильного положительного эффекта без изменения угла наклона щитов!

Заключение

В результате проведенных исследований была получена конструкция сухой градирни на естественной тяге сбросной мощностью 1,2 МВт.

Выбранные технические решения:

- использование сплошной стенки с дефлекторами на входе в градирню;
- угол наклона крыши градирни 10° относительно горизонтали;
- теплоизоляция крыши;
- использование вытеснителей (щитов) между секциями теплообменника.

Конструкция градирни позволяет осуществлять работу АСММ полностью в пассивном режиме как на энергетическом уровне мощности, так и при расхолаживании станции.

Спасибо за внимание!